If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=126^2
We move all terms to the left:
2x^2-(126^2)=0
We add all the numbers together, and all the variables
2x^2-15876=0
a = 2; b = 0; c = -15876;
Δ = b2-4ac
Δ = 02-4·2·(-15876)
Δ = 127008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{127008}=\sqrt{63504*2}=\sqrt{63504}*\sqrt{2}=252\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-252\sqrt{2}}{2*2}=\frac{0-252\sqrt{2}}{4} =-\frac{252\sqrt{2}}{4} =-63\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+252\sqrt{2}}{2*2}=\frac{0+252\sqrt{2}}{4} =\frac{252\sqrt{2}}{4} =63\sqrt{2} $
| (2x)^2=126^2 | | 10+3/n=n-6 | | -7x-21=28 | | f/5-23=-25 | | 2x-(x/8)+5=35 | | 4x+12=108 | | g/3+15=29 | | 7w-17=46 | | 12v-6v=30 | | 4a+6=3a+7 | | 1.4=t/6.5 | | 7/8+p=1/4 | | -3p+30=15 | | H(x)=9x-2 | | 3w-15=-3 | | y/5-7=5 | | 23x=44 | | H(t)=-16t^2+150t+90 | | 7.4=-t/1.5 | | 3n-16=n2-6n+3 | | -17=0.5k | | Y=150+75x | | −17=−0.5k | | 12x-8=14x-10 | | 11k^2=-8k-4 | | 20-2d=5 | | 21=2(5x-2) | | 42=5x-2 | | 8(-1+m)+3=2(m-5~1/2) | | 8(-1+m)+3=2(m-5`1/2) | | 88+88+x=180 | | 8(-1+m)+3=2(m-5,1/2) |